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Semantics of Types for Database Objects*

Atsushi Ohori

Department of Computer and Information Science,

University of Pennsylvania,

Philadelphia, PA 19104-6389, U.S.A.

Abstract

This paper proposes a framework of denotational semantics of database type systems and constructs

a type system for complex database objects. Starting with an abstract analysis of the relational model,

we develop a mathematical theory for the structures of domains of database objects. Based on this

framework, we construct a concrete database type system and its semantic domain. The type system

allows arbitrarily complex structures that can be constructed using labeled records, labeled variants,

finite sets and recursion. On the semantic domain, in addition to standard operations on records,

variants and sets, a join and a projection are available as polymorphically typed computable functions

on arbitrarily complex objects. We then show that both the type system and the semantic domain

can be uniformly integrated in an ML-like programming language. This leads us to develop a database

programming language that supports rich data structures and powerful operations for databases while

enjoying desirable features of modern type systems of programming languages including strong static

type-checking, static type inference and ML polymorphism.

1 Introduction

There have been a number of attempts to develop data models esent complex database objects beyond

the first-normal-form relational model. Examples include nestea telations [22, 48, 46] and complex object

models [31, 8, 2]. (See also [29] for a survey.) However, these complex data structures and associated database

operations have not been well integrated in a modern type system of a programming language, creating the

problem known as "impedance mismatch" [39, 7]. As a result, database programming cannot share the

benefits of recent developments in type theories of programming languages such as static type inference

[40, 20] and polymorphism [40, 47], which should have had apparent practical benefits for many database

applications. The problem is seen by simply noting that any existing polymorphic type system cannot

represent even the relational model - perhaps the simplest form of a "complex object" model. As pointed

out in [6], no existing type system can type-check a polymorphic natural join operation. Several languages

*This research was supported in part by grants NSF IR186-I0617, ARO DAA6-29-84-k-0061, and by funding from AT&T's
Telecommunications Program at the University of Pennsylvania and from OKI Electric Industry Co., Japan.



have been proposed to integrate database structures into a programming language [52, 4, 5, 17, 16, 421.
(See also [6] for a survey.) However, their type systems are either dynamic or rather limited and do not

incorporate static type inference nor polymorphism.

The author believes that the major source of this mismatch problem is the poor understanding of the

properties of types for databases and the structures of domains of database objects. Traditionally, the theory

of types of programming languages has been focussed on function types and domains of functions. Neither

the properties of database type systems nor their relationship to type systems of programming languages
have been well investigated. The goal of this paper is to construct a theory of database type systems that
will serve as a "bridge" between complex data models and type systems of programming languages and to

propose a concrete database type system that is rich enough to represent a wide range of complex database

objects. These shc-'Id enable us to develop a strongly typed database programming language that supports
rich data structures and powerful operations for databases while enjoying desirable features of modern type

systems of programming languages including static type inference and ML polymorphism.

As suggested by Cardelli [14], one way to represent complex objects in a programming language is to use

labeled records and labeled disjoint unions (or labeled variants) found in many programming languages such
as Pascal, Standard ML [25], Amber [15] and Galileo [4]. The following is an example of a labeled record

expression:

[Name = [Firstname = "Joe", Lastname = "Doe"], Dept = "Sales", Office = 278]

Types for expressions can be easily defined. For example, the above record is given the following type:

[Name : [Firstname : string, Lastname : string], Dept : string, Office : int]

Tuples in the relational model are regarded as labeled records that contain only atomic values. In program-
ming languages, these data structures are inductively defined allowing arbitrarily nested structures. Some

languages also support recursively defined types and expressions. On these complex expressions, various

operations are available. Assuming computable equality on each atomic type, equality on expressions that
do not contain functions is computable and it is not hard to introduce set expressions on those complex

expressions. A database of complex objects could then be represented as a set of these complex expressions.

An obvious problem of this approach is that, in practice, both expressions and sets become very large
and contain a great deal of redundancy. This problem is elegantly solved in the relational model by the

introduction of the two operations the (natural) join and the projection. Instead of representing a database

as one large set (relation) of large tuples, we can first project it onto various small relations and then

represent a database as a collections of those small relations. Larger relations are obtained by joining these
small relations when needed. In order to support complex database objects in a programming language,

it is therefore essential to support a join and a projection on complex expressions. We further believe

that properly generalized join and projection together with standard operations on complex expressions

form a sufficiently rich set of operations for complex database objects. Furthermore, integration of them

into a modern type system of a programming language yields a database programming language in which
databases are directly representable as typed data structures and a powerful set of operations are available as

typed polymorphic functions. Such a programming language should be also suitable for other data intensive

applications such as natural language processing and knowledge representation. We therefore hope that the
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integration should also contribute to solve the "high-level" impedance mismatch between database systems

and other applications.

The join and the projection in the relational model are based on the underlying operations that compute

a join of tuples and a projection of a tuple. By regarding tuples as partial descriptions of real-world entities,

we can characterize these operations as special cases of very general operations on partial descriptions; the

one that combines two consistent descriptions and the one that throws away part of a given description. For

example, if we consider the following non-flat tuples

t, = [Name = (Firstname = "Joe"]]

and

t2 = [Name = [Lastname = "Doe"l]

as partial descriptions, then the combination of the two should be

t = [Name = [Firstname = "Joe ", Lastname = "Doe"]]

Conversely, the tuple t, is considered as the result of the projection of the partial description t on the

structure specified by the type

[Name :string, [Firstname : string]].

Operations that combine partiai information also arise in other areas of applications. Examples include the
"meet operation" on Ait-Kaci's tb-terms [3] and the "unification operation" on feature structures representing

linguistic information (see [55] for a survey).

Based on this general intuition, in this paper, we propose a framework of denotational semantics for

database type systems and construct a concrete database type system and its semantic domain. The type

system contains arbitrarily complex expressions definable by labeled records, labeled variants, finite sets and

recursion. On its semantic domain, a join and a projection are defined as polymorphically typed computable

functions. Furthermore, we carry out these construction in a completely effective way. In our framework,

we require types and objects to be finitely representable and various properties to be effectively computable.

This means that, once we have constructed the type system and its semantic domain based on our framework,

it not only provides an uniform and elegant explanation of the properties of type system and the structures of

domain of complex database objects, but it also provides representations and algorithms to integrate them

into a practical programming language. Based on these results, an experimental programming language,

Machiavelli [45], has been developed at University of Pennsylvania.

The rest of this paper is organized as follows. In section 2, we analyze the roiational model as a typed

data structure and extract the essence of the join and the projection. This analysis will also serve as

an introduction to the subsequent abstract characterizations of database type systems and their semantic

domains. Based on the analysis of the relational model, in section 3, we characterize the structures of type

systems in which a polymorphic join and a polymorphic projection are definable and propose a framework

for their semantic domains. In section 4, we define a concrete type system for complex database objects and

construct its semantic domain. A part of the construction of the semantic domain (section 4.5) is based on

the idea developed in [13] that a certain ordering on powerdomains can be used to generalize the relational

join uniformly to complex objects and the idea due to Ai't-Kaci [3] that a rich yet computationally feasible
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domain of values is nicely represented by labeled regular trees. In revising this paper, the author also noticed

that Rounds' recent work [49] achieves results similar to the ones presented in section 4.5 using a slightly

different framework. Finally in section 5, we show that the type system and its semantic domain can be

integrated in an ML-like programming language.

2 Analysis of the Relational Model

We first give a standard definition of the relational model. Since our purpose is to extract the essence of the

type structure of the model, we define the model as a typed data structure. We also integrate null values

in the model. The importance of null values has been widely recognized and several approaches have been

proposed [9, 53, 34, 58]. Among them, we adopt the approach that null values represent non-informative

values [58]. This approach fits well in our paradigm that database objects are partial descriptions and plays a

crucial role in our theory of semantic domains of database type systems being developed in the next section.

Let 4 be a countably infinite set of labels. We assume that we are given a set B of base types and a set

of atomic objects Bb for each b E B. For each base type b, we denote by nullb the null value of the type b.

Definition 1 (Tuples and Relations) A tuple type r is a term of the form [11 : b, . . ,l, : bn] where

i n,...,l, E £ and bi ... , b, E B. A tuple t of the tuple type [11 " b1 ..... In : bn] is a term of the form

[li = cl,... ,1,1 = cn] such that ci E Bb, or c = nullb., 1 < i < n. A relation type (or relation scheme in the

database literature) p is a term of the form Jr) for some tuple type r. A relation instance r of the relation

type Jfr is a term of the form {t n .. I. t.j such that each ti, 1 < i < n is a tuple of the type r.

Regarding a tuple t as a function from a finite subset L C C to UbELB Bb U {nUllbjb E B}, we write dora(t)

for the set of labels in t and t(l) for the value corresponding to the label I.

Relation instances are terms representing sets, for which the following equations hold:

t .  tQ = Iti .... ,ti.1 if i,....,in is a permutation of 1,...,n

and

(t 1 ,t 2 ,t 3 , . = " t 2 ,t 3 .... I if tl = t 2 .

We consider relation instances as equivalence classes of the above equality. Under this equality, relation

instances behave exactly like sets of tuples, on which ordinary set-theoretic operations are defined. Based

on this fact, we treat relation instances as sets of tuples and apply ordinary set-theoretic notions directly

to them. Readers might think that this strictly syntactic treatment only introduces (trivial but annoying)

complication to structures that were simpler and more intuitive if we treated them just as sets. This had

been true if we were only interested in sets of fiat tuples. However, it is no longer possible to maintain such

intuitive treatment when we allow infinite structures through recursion. Our syntactic treatment provides a

uniform way to treat complex structures involving recursion.

Among the operations in the relational algebra, we only define the join and the projection. As we have

argued, these two operations make the model a successful data model for databases. They also distinguish

the model from standard type systems of programming languages. Two tuple types rl, r. are consistent if
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Name Age Office

Name Age Salary "Joe Doe" null4. 103
"Joe Doe" 21 21000

"John Smith" ntl4nt 34000 "John Smith" nnl4nt 278
"Mary Jones" 41 556

rt
r2

Name Age Salary Office

"Joe Doe" 21 21000 103

"John Smith" nul, 34000 278

join(rl,r2)

Figure 1: Join of Relations Containing Null Values

for all 1 E dor(rl) n dom(r2), Ti(l) = 72(l). Let ri, 12 be two consistent tuple types. Define jointype(r, 2)

as the type r such that dom(r) = dom(r) U dom(r2 ) and r(l) = 1i(l) if I E dom(ri) otherwise r(l) = r2(l).

The two tuples tl,t 2 are consistent if for all i E dom(ti)ndom(t2) one of the following hold: (1) t1(l) = t2(1),

(2) ti(l) = nullb and t 2 (l) E Bb or (3) ti(l) E Bb and t 2(l) = nullb. Two relation type Ir), 11"21 are

consistent if "1,T"2 are consistent. For two consistent relation types 11" 1 , J1"21, define jointype(Ifr 1, r' )
as the relation type (jointype(ri, r2)1.

Definition 2 (Relational Join) Let tt,t 2 be two consistent tuples of the respective types l-, r 2. Then

1"1,-2 are also consistent. The join of t1,t 2, join(tl,t 2), is the tuple t of the type jointype(rl, r2) such that

dom(t) = dom(ti)Udom(t2), and t(l) = ti(l) if I E dom(tl) and either I dor(t 2) ort 2 (l) = nullb otherwise
t(l) = t2(i)-

Let rl = (ti. .. ,tn , r2 = It', .. ,t'I be two, relation instances having the consistent relation tyes

P1, P2 respectively. The (natural) join of ri, r2 , join(r, r2 ), is the relation instance r of the type jointype(pl, p2)
such that r = JtI3t, E r 13t, E r2. ti,tj are consistent , t = join(ti, ti)1.

Definition 3 (Relational Projection) Let t [l = c1 , .. . , I, = cn,. . .] be a tuple of a type r of the forn

l1 : bi,.. . , In : b,.. .]. The projection of t onto the type 7- = [1 : b,..., l, : b.], projectr,(t), is the tuple

[11 = C1,... ,In = c,] of type Ti. Let r is a relation instance of the type I'n. The projection of r on the type

Ir'), projectir,j(r), is the relation instance 4project,,(t)lt E rl of the type jr').

When restricted to tuples without null values, it is clear that the above definitions are straightforward

translations of standard definitions of the relational model found for example in [57, 21, 38]. The operation

join is extended to relations containing null values. Figure 1 shows an example of ajoin of relations containing

null values. Note that the definition of the join reflects the intended semantics of null values. The projection

is specified by a type not just a set of labels. This will allow us to generalize the relational projection to

complex structures.

These definitions apparently depend on the underlying structures of flat tuples. There are some efforts

to generalize these operations beyond the first normal form relations [48, 1, 22, 32]. (See also [29] for a
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survey.) However, their definitions still depend on the underlying tuple structures. Here, we would like vo

characterize the join and the projection operations independent of the underlying data structures so th it
we can generalize them uniformly to a wide range of complex data structures and introduce them to a type

system of a programming language. Our guiding intuition is the idea exploited in [13] that database objects

are partial descriptions of real-world entities and are ordered in terms of their "goodness" of descriptions.

The idea of partial description was originally suggested by Lipski [35]. The corresponding ordered structure

was first observed by Zaniolo [58] and is closely related to the ordering on 0-terms [3] and finite state

automata [50].

A preorder is a transitive reflexive relation. Let (P, _) be a preordered set. Two elements z, y E P is

consistent if there is some z E P such that z < z and y < z. z is called an upper bound of z, y. (In what
follows, we only need upper bounds of two elements and therefore we restrict the notion of upper bounds

to upper bounds of two elements.) A least upper bound of z, y is an upper bound z of z, y such that z < w

for any upper bound w of z, y. A preordered set (P, <) has the pairwise bounded join property if any two

consistent elements has a least upper bound. A partial order is an antisymmetric preorder. In a partially

ordered set (poset), least upper bounds are unique. We denote by z U y the least upper bound of z, y (if
exists). Any preordered set (P,_5) induces a poset, called the quotient poset induced by (P,:5), denoted by
[(P, _)]: Let a be the equivalence relation on P defined as z a y iff x < y and y _ z. We denote by [z] the

equivalence class containing z. Define the set P/= as {[z]z E P} and the relation </i on P/= as [z] </s [y]
iff z < y. Then [(P, <)] is the poset (P/-, <K/). The following result is standard.

Lemma 1 If (P, <) is a preordered set with the pairwise bounded join properly then [(P, 5)] is a poset with

the pairwise bounded join property.

For generality and simplicity, we treat tuples and relations uniformly. We call both tuple types and

relation types as flat description types (ranged over by o) and tuples and relation instances as flat descriptions

(ranged over by d). For each flat description type -, we write D, for the set of descriptions of the type
o,. A flat description type represents a structure of descriptions. Such structures are naturally ordered to

represent the intuition that one contains the other. For example, if 1, = [Name : string, Age : int] and

o'2 = [Name : string, Age : int, Office : int], then the structure represented by 0 2 contains the structure

represented by a,. This intuitive idea is formalized by the following ordering:

Definition 4 (Ordering on Flat Description Types) The information ordering K on flat description

types is the smallest relation satisfying:

[11 : b ,...,l,- : bnJ [11 : bl,.... In : bn....

1711 9 2JI if 71 :r2

Since the relation is based on the inclusion of fields of records, it is clear that it is a partial order. Moreover,

this ordering has the following properties:

1. < on the set of description types has the pairwise bounded join property, and

2. the ordering relation < is decidable and least upper bounds (if they exist) are effectively computable.

6



The importance of this ordering is that it provides the following characterization of the types of the

relational join and the relational projection:

Theorem 1 (Types of Relational Join and Projection) Let dl, d2 be flat descriptions of the types a,0o2

respectively.

1. If join(di, d2 ) is defined and equal to d then or1 U 92 exists and d has the type al1 U 02.

2. If project,(di) is defined and equal to d then o _ a, and d has the type a.

Proof The property of join is an immediate consequence of the fact that jointype(. 1 ,o2 ) exists and equal

to 0 iff a1 U 02 exists and equal to a. The property of project is an immediate consequence of the definition.

I

We can then give the following type schemes (polymorphic types) to the join and the projection:

join : (01 X 0 2) - 0 1 U 0 2 for all 01, 92 such that 01 U C2 exists

project : 01 - 02 for all ori, o2 such that o,2 <5 a1

Since the ordering relation is decidable and least upper bounds are effectively computable, these type schemes

allow us to type-check expressions containing joins and projections.

We next characterize these operations themselves using ordering on descriptions. Zaniolo observed [58)

that the introduction of null values induces the following ordering on tuples:

[11 = Zi,...,ln = z,.] C_ [11 = Yl,..., 1. = yt] iff either i = nullb or zi = yi, I < i < n

This ordering is interpreted as the ordering of "goodness" of descriptions. The following is an example of

this ordering.

[Name = "Joe Doe", Age = nul4,,] C_ [Name = "Joe Doe", Age = 21]

It is clear that for ant tuple type r this ordering is a partial order on D, with the pairwis bounded join

property. The join on tuples of a same type is characterized as the least upper bound operation under this
ordering, which formalizes our intuition that the join is an operation that combines partial descriptions:

Proposition 1 (Join of Flat Tuples) If t1 ,t 2 E D, then join(tl,t 2 ) = t iff tl U t 2 = t.

Proof By definitions. I

For a relation type p, an appropriate ordering on D, to characterize the join on D. turns out to be the

ordering known as Smyth powerdomain ordering [56]. To define the ordering, we first define a preorder :

..... t' ifVt' E Itt .. . ..... t } t ti t,}.tt g t

The relation -< is not antisymmetric. However, we can take the quotient poset induced by the preorder:

Proposition 2 For any relation type p, [(D,, -)] is a poset with the pairwise bounded join property.

7



Proof -< is cle,.'y transitive and reflexive and therefore (D,, ) is a preordered set. Let r, and r2 be

any element . a D# under -_. Let r = It 3ti E r1 3ti E r 2 . t,,ty are consistent, t = join(ti,ti)). Since

tl U t2 = join(t1 , t2), as a special case of the result showr in (56], r is a least upper bound of r, and r 2 . Then

the proposition follows from lemma 1. 1

We regard a relation instance as a representative of the corresponding equivalence class induced by the above

preorder and write d, U d2 for the least upper bound of the corresponding equivalence classes. We also write

(D,, Q) for ((D,, _)]. Readers are referred to [13] for the intuition and relevance of this ordering in various

aspects of databases. [12, 49] also use this ordering in a context of partial information. For us, this ordering

provides the following characterization of the join on relations shown in [13]:

Proposition 3 (Join of Flat Relations) If rl, r2 E D, then join(rl, r2 ) = r iff r, U r 2 = r.

In order to characterize joins of descriptions of different types and projections, we interpret the partially

ordered spaoe of flat description types by coercions between domains.

Definition 5 (Coercions between Relational Domains) The set of up-coercions is the set of mappings

{-0610 o'2} defined as

1. ifor = [l : bl,..., In bn], a 2 = [11 : bi,....1, b , In. : b,+,... ,ln+m : b,+m] then

= Ci, . ., In = cn])= [1 = C,.. .,ln = Cn,ln+1 = nullb.+,,... ,ln+m = nullIb.+,],

2. if a, = (r,, a'2 = ir 2 ) and r, < r2 then

(= fo{,-.l2 (t)lt E rR.

The set of down-coercions is the set of mappings {:5,..G o'' < ol} defined as

1. if al = [11 :bl,..., , : bn.... and 0'2 = [ : bl..... l, b,] then

0OaloW[ = c ..... , = c., .. = ]) = 1 =...... c],

2. if O' = 0'2 = fl21 then r2 < rI and

,_ )= (,,,- (t)It E rl.

Intuitively, an up-coercion coerces a description to a description of a larger structure by "'padding" extra

part of structure with null values. A down-coercion on the other hand coerces a description to a description

of a smaller structure by "throwing away" part of its structure. For example, if

ri = [Name : string, Age : :nt]

r2 = [.Vame : sting, Office : int]

r3 = [.Vame : string, Age : int, Office : int]

tj = [Name = "Joe", Age = 211

t2 = [Name = "Joe", Office = 278]

t3 = [Name = "Joe", Age = 21, Office = 278]

8



then

(t 1) = [Name = "Joe", Age = 21, Office = nul4n,,]

O.,-r.(t2) = [Name = "Joe", Age = nul4,,, Office = 278]

Or.-,,(h) = t2

We then have the following equations:

join(tl,t 2) = UDI-.,(t1 ) U 0, 1 #,2- 7 3 (t 2)

project,7 (t3 ) =---- .-r t3)

project, (t 3 ) = 0bT- 2 (t 2 )

This example suggests that computing a join of descriptions of types 0.1, 02 corresponds to coercing them

to the type or, U a 2 followed by computing their least upper bound. The projections correspond to down-

coercions. Indeed we have:

Theorem 2 (Relational Join and Projection) Let di and d2 be any flat descriptions of types al, 02

respectively. join(dl,d 2) exists and equal to d iff 1 l U0 2 exists and d = 0,.,(d1) UD. 0, 2-,(d 2 ) where

0r = Ol U 0 2 . project,(dj) exists and equal to d ifoa < a1 and d = 0,,_,(d1)

Proof By the definitions of 0 and join, for any d, of type a1 and d2 of type 0"2 such that Ol U 02 exists and
equal to a, join(dl, d2) exists and equal to d iff join((k, ,(di) , 0,_(d 2 )) exists and equal to d. Then the
property of join follows from propositions 1 and 3. The property of projection is by definitions. I

The semantic space of the relational model is therefore characterized by the set

{(D,, [)Io is a flat description type}

connected by the set of pairs of up- and down-coercions

{( o-o,, o,-,)101 _ 02}.

associated with the set of join operations {join( , 10q)_",l U 0 2 exists and equal to o,} defined as

join(,x,)_,(dl,d2 ) = 0 ,_(dl) UD. 0o2 -o(d 2 )

and the set of projection operations {project_,,,-q102 < 9 2 } defined as

project, 1 -_ 2(d) =

The importance of this characterization is that it applies to any set of domains on which we can define
information orderings and appropriate sets of coercions. Based on this analysis, in the next section, we
formally define the structures of type systems for databases and their semantic domains.
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3 Database Domains

As a generalization of the set of fiat description types in the relational model, we define a set of types for

databases as follows:

Definition 6 (Database Type Systems) A database type system is a poset of types (T, <) tuch that

1. it has the pairwise bounded join property, and

2. the ordering relation and least upper bounds (if they ezist) are effectively computable.

We call each element of T a description type.

Each type represents a structure of descriptions and the ordering on types represents the containment

ordering of the structures they represent. The pairwise bounded join condition is necessary for the types of

joins to be well defined. The decidability conditions is necessary for effective type-checking.

Each description type should denote a domain of descriptions. As a generalization of domains of flat

descriptions in the relational model, we require domains of descriptions to satisfy the following conditions:

Definition 7 (Description Domains) A description domain is a poset (D, E) satisfying:

1. D has the bottom element nullv, i.e. for any d E D, nullD _ d,

2. D has the pairwise bounded join property,

3. the ordering relation C_ is decidable and least upper bounds (if they exist) are effectively computable.

Condition 1 allows us to represent non-informative value which is essential for partial descriptions. Condi-
tion 2 states that if we have two consistent descriptions then the combination of the two is also representable

as a description. This is necessary for join to be well defined. The necessity of the condition 3 is obvious.

It should be noted that description domains are models of types of database objects and not models of

general types in programming languages such as function types. In particular, they should not be confused

with Scott domains [54] which is used to give semantics to untyped lambda calculus and programming

languages with recursively defined functions [51]. Both notions share similar ordered structure and are

based on a similar intuition that values are ordered in terms of "goodness of approximation". However, the

properties of the two orderings are fundamentally different. The ordering on a description domain is just a

computable predicate. On the other hand the Scott ordering ;- regarded as a predicate on the computability

and in principle not computable.

By abstracting underlying tuple structures from the definition of up-coercions and down-coercions be-

tween relational domains, we interpret an ordering on description types by a special class of mappings

between description domains. A function f : D -. D2 between lescription domains D1 , D2 is monotone

if for any z, y E Di, z C y implies f(z) C f(y).

10



Definition 8 (Embeddings and Projections) A monotone function 0 : D1 --+ D2 is an embedding if

there ezists a function 10 : D2 --o Di such that (1) for any z E D2, (0(z)) C z and (2) for any z E D1,

4'(O(z)) = z. The function 0 is called a projection.

A pair of embedding and projection is a special case of Galois connections (or adjunctions), for which the

following result is well known (23]:

Lemma 2 Given an embedding 4 : D, -- D2, the corresponding projection is uniquely determined ly 4.

If 4, is an embedding, we sometimes denote by OR the corresponding projection.

If a pair of description domains (DI, D2) has an embedding-projection pair (0, : D -* D2, 4 : D2 - D)
then D2 contains an isomorphic copy D' = O(D1) of D, and for any element d in D2 there is a unique maximal

element d' E DY such that d' C d. We regard this property as the semantics of the ordering of description

types. 4 maps an element d E D, to the least element d' E D2 such that d' contains all information in d.

4' maps an element d E D2 to a unique maximal element d' E D, that contains only information in d and
is regarded as a database projection from D2 to D1 . The set of up-coercions we have defined on relational

domains are indeed the set of embeddings between relational domains. The corresponding projections are

exactly down-coercions.

Our characterization of the ordering on types can be regarded as a refinement of one of the characteriza-

tions of subtypes proposed by Bruce and Wegner [11], where the notion of subtypes is characterized in three

ways; one of them being that the larger set contains an isomorphic copy of the smaller. It is also related
to the notion of information capacity of data structures studied in [30] where the ordering on various data

structures was defined by using mappings between the sets of objects.

Finally we define a semantic space of a database type system as a space of description domains partially

ordered by a set of embedding-projection pairs.

Definition 9 (Database Domains) A database domain is a pair (Doam, Emb) of a set of description do-

mains Dom and a set of embeddings Emb between Doam satisfying the following conditions:

1. For any two domains DI, D2 E Dom, there is at most one 0 E Emb such that 4, D, - D2 . We write

OD,-D 2 for an embedding of type D, - D2 .

2. For any domain D E Dom, OD-D E Emb.

3. Emb is closed under composition.

4. For any two domains D1 ,D 2 E Dom, if there is some D E Dom such that ,
DI-D E Emb and

6kD2 -D E Emb then there is a unique D' E Doam depending only on D1 , D2 such that 6D,D' E Emb.

OD,-D, E Emb and for any D" E Dom If O,,D: E Emb and OD.-D" E Emb then oD'-D" E Emb.

5. For any 4, E Emb, both 4, and 4 R are computable, i.e. there is an algorithm to compute d(d) and OR(d)
for any given d E dom(4,) and d' E do'm(4,R).

The condition I means that the set of embeddings defines a relation on Dom. Moreover,

11



Proposition 4 The relation defined by Emb is a partial order with the pairwise bounded join property.

Proof From the condition 2 and 3, the relation is reflexive and transitive. For anti-symmetricity, suppose

4x-y E Emb and 0y.x E Emb for some X,Y E Dom. Since 0x-x E Emb and Oy-y E Emb, the

uniqueness of D' in the condition 4 implies X = Y. The pairwise bounded join property is an immediate

consequence of the condition 4. 1

Definition 10 (Models of Database Type Systems) Let (T, <) be a database type system. A database

domain (Doam, Emb) is a model of (T, 5) if there is a mapping p: T --+ Doam such that for any rl, "2 E T,

7715 r2 iff Oi(v1)-p(T2) E Emb.

Remember that on description domains we imposed the conditions that the ordering is decidable and least

upper bounds are computable. Combined with the computability condition on embeddings and projections,

they guarantee that the join and the projection defined as

join(G,1xq2)...a,(di,d2) = o1.. ,0 (di) 0D 4 0 2- 0 (d2 ) (1)

projecto,_, 2 (d) = f (2)

are always computable functions. This means that if a database type system has a model, then the join and

the projection are available as computable functions with the following polymorphic types:

join : (0 1 X 0'2) - 0 1 U 02 for all ali, o.2 such that 0.1 U 0 2 exists (3)

project : " 0 2 for all o'l,,o2 such that o.1 :5 0 2 (4)

The relational join and the relational projection are special cases of the above functions on fiat tuple struc-

tures. Moreover, from the previous results, we have:

Theorem 3 The set of flat description types with the information ordering < is a database type system.

The pair of the set of relational domains and the set of up-coercions

({(D.,,r-_)Io, is a flat description type}, { 1 0. 1 S 0'2})

is a database domain and a model of the poset of flat description types.

We therefore claim that the notions of database type systems and database domains are a proper general-

ization of the relational model.

The advantage of this characterization is that it is independent of the actual structures of types and

objects. This allows us to generalize the relational model to wide range of structures, even those that

include recursively defined types and objects. In the next section we construct a database type system

and its database domain, which we believe is rich enough to cover virtually all proposed representations of

complex database objects.

4 A Type System for Complex Database Objects

In addition to finite structures representable by finite terms, we would like to allow recursively defined

structures, which naturally emerge in descriptions of real-word entities. As demonstrated by Ait-Kaci [3],
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an appropriate formalism to represent these structures are regular trees, which provides a sufficiently rich

yet computationally feasible framework for complex data structures. We therefore develop our type system

and its domain using regular trees. However, this generality creates a slight technical complication that

we cannot use inductive method to define structures and to prove properties. This may yield less intuitive

definitions and might decrease the readability of the rest of the paper. In order to prevent the situation,

for major definitions and properties, we give equivalent inductive characterizations on finite trees. They will

not be used in the subsequent development and we shall omit the proofs of their equivalence to the original

definitions restricted to finite trees. They can be proved by usual structural inducion.

4.1 Labeled Regular Trees

We gather definitions and standard results on regular trees. Main references on this subject are [19, 18].

Let A be a set of symbols. The set of all strings (finite sequences of symbols) over A is denoted by A*. The

length of a string a E A* is denoted by lal. The empty string e is the string of length 0. The concatenation

of a, b E A* is denoted by a -b. A string a is a prefix of a string b if there is some c such that a = b. c. A

prefix a ofb is proper ifa 6 b. For X C A* and Y C A*, X-Y is the set {z.y EX,y EY}. We write z-Y

for {x}. Y and X- y for X. {y}. For a E A* and X C A*, X/a is the set fbl3c E X such that c = a. b}. We

identify an element a E A and the corresponding string a of length one.

Instead of using a standard representation of trees based on fixed arity function symbols with ordered

arguments, we use labeled trees whose node are labeled with function symbols and whose edges are labeled

with elements in £ indicating their arguments. This is a generalization of labeled record structures and is

particularly suitable for representing complex structures including recursively defined ones. The following

definition is due to [3].

Definition 11 (Labeled Trees) Let F be a (not necessarily finite) set of symbols. A labeled F-tree is a

function a : L -. F such that L is a prefix-closed subset of C*, i.e. for any a,b E C, if a.b E L then a E L.

A tree a is finite if its domain dom(a) is finite otherwise it is infinite. The set of all F-trees and the set of

all finite F-trees are denoted respectively by T' (F) and T(F).

Note that we do not impose the arity restriction on function symbols. However, we can regard each function

symbol f E F as the set of symbols {.f ,....} l,-.. , I, E £} indexed by finite sets of labels. By assuming

a total order < on L, we can then regard our definition of trees as a notational variant of the standard

representation of trees found in [19, 18] based on the tree domains [24]. We omit formal treatment of the

connection.

For any element f E F, we also denote by f the one node tree such that dor(f) = {} and f(c) = f.

Let a,. .. ,an E T'(F), I .... ,,In E C and f E F. We write f(1 1 = aor . , 1, = an) to denote the tree

a such that dom(a) = 11 -dor(a1 ) U ... U In • dor(an), a(e) = f, a(li - a) = ai(a) for all a E dom(ai),

1 < i < n. If a E T°(F) and a E dorn(a) then the subtree at a in a, denoted by a/a, is the tree a' such

that dom(a') = dom(a)/a, and for all b E dom(a'), a'(b) = a(a . b). The set of all subtrees of a tree a is the

set Subtreea(a) = {a/ala E dorn(a)}.
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Definition 12 (Regular Trees) A tree a E T'(F) is regular iff the set Subtrees(a) is finite. The set

of all regular trees in T (F) is denoted by R(F).

Intuitively, regular trees are trees that have a finite representation. There are several equivalent representa-

tions of regular trees. Following [3], we use Moore machines to represent them.

Definition 13 (Moore Machine) A More machine is a 5-tuple (Q, s,F, 6, A), where Q is a set of states,
s is a distinguished element in Q called the start state, F is the set of output symbols, 6 is a partial function

from Q x £ to Q called the state transition function such that for any q E Q, {l E £j&(q, I) is defined) is

finite and X is the output function from Q to F.

In the above definition, the input alphabet is implicitly assumed as the fixed set C of labels. Because of the

restriction on 6, a Moore machine under the above definition behaves like a Moore machine under a standard
definition where the input alphabet C is finite and 6 is defined as a total function on Q x C. As is lone

in standard finite state automata (26], we extend 6 to 6 on Q x £*. A state q E Q is reachable if there is

some a E V such that 6(s, a) = q. Each state q E Q of a Moore machine M = (Q, s,F, 6, X) represents a

function form a prefix-closed subset of £ to F. Define M(q) as the function such that dom(M(q)) = {a E

£IP(q,a) = q for some q' E Q} and M(q)(a) = A(6*(q,a)) for all a E dom(M).

The following theorem establishes the relationship between Moore machines and regular trees, which is
essentially same as the equivalence of regular trees and regular systems shown in [19]. The proof can be

easily reconstructed from the corresponding proof.

Theorem 4 For any Moore machine M = (Q, s, F, 6, A), M(s) E R(F). Conversely, for any regular tree

a E R(F) there is a Moore machine M = (Q, s, F, 6, A) such that a = M(s).

We say that a regular tree a is represented by a Moore machine M if M(s) = 0.

We use the following term language to represent regular trees via Moore machines:

e ::= s I f I f(l = e,...,l = e) I (rec s. e)

where f stands for F, I stands for £ and s stands for the set of state variables disjoint from other symbols.

The state variables are bound variables similar to those in lambda calculi. A term e is proper if a state
variable occurrence s is either an occurrence of the form rec s or in some e' in (rec s. e').

For a proper term e, define the Moore machine Me = (Q, s, F, 6, A) as:

1. Q = {qf for each occurrence f E F in e},

2. s - q1 where f is the outmost occurrence of output symbol in e,

3. 6(q1 , 1) = qg iff either f, g are the occurrences in a subterm of the form f.... I = g(...) .... ) or f, g are
the occurrences in a subterm of the form (rec s. g(... f(.... I = s,...)...)) such that it is the smallest

subterm of the form (rec s....) surrounding f(. .. , = s ....

4. A(qp) = f.
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The regular tree represented by a proper term e is then defined as M.(a). It can be also shown that for any

regular tree a there is a proper term e that represents a.

For a technical convenience we assume that the set of labels £ is closed under products, i.e. there is a

injective function prodcode : (C x C) -* C. For any given set of labels, we can construct a set satisfying this

condition. We use prodcode implicitly and treat C as the set satisfying C ×C C C. In particular (C X C)" E '.

On (C x £) we define the mappings first, second inductively as follows:

first(c) = c

first(a. (11 ,12)) = first(a). I

second(c) = c

second(a. (li,12)) = second(a) 12

On {(a,b)Ia E £,b E £, lal = Ibli, we define pair as follows:

pair(c,c) = e

pair(a.1l,b.12 ) = pair(a,b) .(I1,12)

For a E V x V, the following equation always holds:

pair(first(a), second(a)) = a

Let r be a relation on £. The extension of r on V*, denoted by i, is the relation defined as:

a-11 a a.12if1r12

The following construction on Moore machines, which "traces" two Moore machines in "parallel", is often

useful to determine various relations on regular trees. This can be regarded as a generalization of the merged

transaction function used to determine the equivalence of two finite state machines in [27]. The new symbol

$ introduced below represents a "rejecting state" in a standard representation.

Definition 14 (Product Machine) Let - be any equivalence relation on C. Given two Moore machines

Mi = (Q1, st, F1, 61, At) and M 2 = (Q 2 ,s 2F 2 ,6 2 ,,A2 ), the product machine of M, and M 2 modulo -, write

(M x M 2 )/-, is the Moore machine (Q, a, F, 6, A) such that

1. Q = (Q1 U {$}) x (Q2 U {$)) where S is a new distinguished symbol that does not appear both in At
and M 2,

2. s = (81,52),

19. F = (Ft U {$}) x (F 2 U {$})

4. 6((z, y), 1) is defined and equal to (z', y') iff one of the following holds:

(a) I = (11,12), 11 0 $,32 $, It - 12, z E Qi,y E Q2, and z' = 61(z,i), y = 62(/, 12),
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(b) 1 = (11,12), it # $,12 = 8, X r Q1, either there is no I' such that 6 2(y,! t) is defined and 11 ' or

y S, and z' = 61 (z, l), j/= 8,

(c) 1 = (11,12), I1 = 8,12 # 8, YE Q2, either there is no 1' such that 61(z,l') is defined and 12 - I' or

X S, and z' = S, Y' 62(Y, 12).

5. A((ZI, Z2)) = (01,02) where oi = A,(Z,) if zi E Qj otherwise oi = 8, i 6 {1,2}.

If- is the identity relation = on Z then we write M1 x M 2 for (Mi x M y=.

The construction of a product machine is clearly effective. The following properties are also immediate

consequences of the definition:

Lemma 3 Let M 1 = (Qi, s, P1,6 1 , At), M 2 = (Q 2 ,s 2 , F 2 ,6 2 , A2) and (Q, s, F,,6, A) = (M 1 x M2)1.

1. If 6(s,a) = (qj, q2 ),ql E Ql,q 2 E Q2 then first(a)oAsecond(a) and 6*(si,first(a)) = qj, 6;(s 2, second(a)) =

q2. Conversely, if there are a,b such that a',:b, 6*(sl,a) = q, and 6b(s 2 ,b) = q then 6(s,pair(a,b)) =

(qi, q2).

2. If &(s,a) = (q,z),q E Qj then 6j.(si,first(a)) = q and first(A((q,z))) = AI(q). If 6(s,a) = (x,q),q6

Q2 then 62(s 2 , second(a)) = q and second(A(z, q)) = A2(q).

3. If 6;(si,a) = q then there is some b such that first(b) = a and 6(s,b) = (q,z) and Ai(q) =

first(A((q,z))). If 6(s 2 ,a) = q then there is some b such that second(b) = a and 6"(s,b) = (z,q)

and A2(q) = second(A((q, z))).

4.2 Set of Description Types

Using regular trees, we now define the set of types of our type system:

Definition 15 (Set of Description Types) The set of description type constructors is the set Fr =

{Record, Variant, Set} U B. A description type is a tree r E R(F,) satisfying the following conditions:

1. ifo (a) = Set then {1 E .la .I E dom(a)}= {elmi},

2. if a(a) = 6E B, then the set {I E C£a .I E dom(o)} is empty.

A description type or is finite if it is finite as a tree. The set of all dcscription types and the set of all finite

description types are denoted by Dtype' and Dtype respectively.

Record, Variant and Set represent the record, the variant and the set type constructors respectively. The

condition (1) restricts set types to be " homogeneous" sets. Let Oai... E Dtype'. We use the following

notations:

[11 : ai,...,l .:r] for Record(i, = o,,... ,

(t :t,..,, o,,) for Variant(lI = o' .  1,, =O,,),

form for Set(elm = a)
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unit = []

point = [X-cord : int, Y-cord: int]

intlist = (rec u. (Cons: [Head: int, Tail: u], Nil: unit))

object = [Name: string, Age: int]

person = (rec p. (Name: string, Age: int, Parents: 1p)])

employee = (rec e. (Name : string, Age: int, Parents: (person), Salary: int, Boss: e])

student = [Name: string, Age: int, Parents: lpersoni, Course: Istringl]

working-student = [Name: string, Age: int, Parents: lpersonl, Course: (string), Salary: int,

Boss: employee]

flights = I[Flight: [F-id : int, Date : string], Plane : string] I

flown-by' = {[Plane : string, Pilots: ([Name : string, Emp-id: int]I]

schedule-data = I[Flight: [F-id : int, Date: string], Plane: string,

Pilots: ([Name: string, Emp-id: int])]

Figure 2: Examples of Description Types

Similar shorthands are adopted in term representations of regular trees.

The set of finite description types Diype coincides with the following inductively defined set Dtype*:

1. b C Dtype* for any b E B,

2. if al,..., t, E Dtype' and li,...,In E £ then [l1 : 0"i,.. :" a],, E Dtype*,

3. if o1,...,on E Dtype* and l,...,In E £ then (I :0 i,...,,, : 0a,) E Dtype*,

4. if a E Dtype*, then lol E Dtype*.

Figure 2 shows examples of description types in term representation. In this example, as well as in all

other examples we will show later, identifiers such as unit are used purely as syntactic shorthands to avoid

repetitions and have no significance themselves. As seen in these examples, infinite trees correspond to

rerursively defined types.

For the set Dtype', we define the following ordering to capture the ordering of the containment of the

structures:

Definition 16 (Information Ordering on Dtype') Let o1,o 2 E Dtype'. The information ordering

< on Dtype' is the relation defined as: a, 1 < C 2 iff dom(a'1 ) C dom(o') and for any a E dom(al),

a0"(a) = a'2(a) and if a'l(a) = Varinat then {1 E £a " E dom(oi)} = {I E Ca . I E dom(a 2 )1.

This ordering can be regarded as a special case of the subsumption ordering on Ait-Kaci's i-terms [3). The

condition on variant nodes means that in order for two variant types to be ordered, they must have the same
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unit < point

unit <. object

object < person

person < employee

person < student

employee < working-student

student < working-student

flights < schedule-data

flown-by < schedule-data

Figure 3: Examples of Ordering on Description Types

set of variants. The intuition behind this condition is that if a variant type o, has a a component I: or' and

or has no -component, then for a value v of the type o, corresponding to the component 1 : a" there is no

value v' of the type o4 that is related in structure to v and therefore a and or are not related.

The ordering <, when restricted to the set of finite description types Dtype, coincides with the following
inductively defined relation <0:

b <0 bforallbEB

[I *x..,n n <o [t c ..... 1.: .....] if ai_ :50 , < < n

a 0 for')if 0.a<0 o' f

at, Inx..,~ : On,) _50 (11 : Or .....,I 0 )i T i ', 1< i< n

Figure 3 shows examples of the information ordering on Dtype' among the description types defined

in figure 2.

From the inductive characterization of <, it is easy to check that (Dtype, <) is a poset with pairwise

bounded join property, < is decidable and least upper bounds (if they exist) are effectively computable. The

following two propositions show that these properties still hold for general description types, whose proofs

can be reconstructed from the proofs of the corresponding properties on tp-terms [3] by checking the extra

condition we imposed on the variant nodes.

Proposition 5 (Dtijpe', <) is a poser with the pairwise bounded join property.

Proposition 6 The ordering < on Dtype' is decidable and for any description types 0%, ' 2 , it is decidable

whether (71, a' 2 are consistent or not and if consistent then their least upper bound is effectively computable.

Combining proposition 5 and 6, we have:

Theorem 5 (Dtype, <5) is a database type system.
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The following ii an example of a least upper bound of description types defined in figure 2:

employee U student = working-student

flights U flown-by = schedule-data

From examples shown in figure 3 and the above examples, we can see that < is a generalization of the

information ordering on types in the relational models to complex structures including recursive structures

represented by infinite trees.

4.3 Universe of Descriptions

In order to construct a model of (Dtype, _<), we first define a set of possible descriptions.

Definition 17 (Universe of Descriptions) The set of description constructors is the set Fd = {Record,
Inj, Set} U (UEB Bb) U {nullblb E B}. A description is a tree d E R(Fd) satisfying the following conditions:

for all a E dom(d),

1. if d(a) = Set then {i E £Ja -1 E dom(d)} = {elm,..., elm} for some n > 0,

2. if d(a) = Inj then the set {1 E £1a . 1 E dom(d)} is either a singleton set or the empty set,

3. if d(a) E Bb or d(a) = nullb, then the set {l E £a . I E dom(d)} is the empty set.

A description d is finite if it is finite as a tree. The set of all descriptions and the set of all finite descriptions

are denoted by Dobj' and Dobj respectively.

Inj is a variant constructor (injection to a variant type). Inj node with no outgoing edge represents a null

value of a variant type.

Let dl,... , d E Dobjoo. We use the following notations:

li = dl,... ,4n = dn] for Record(lI = dl,..., In = d,),

Idi,..., d for Set(elmi = dl,..., elm, = dn).

The set of finite descriptions Dobj coincides with the following inductively defined set Dobj*:

1. c E Dobj*, for any cE Bb, b E B,

2. nullb E Dobj* for any b E B,

3. if dl,..., d, E Dobj* and l,...,l E then [11 = dl,...,1, = dn] E Dobj ,

4. InjE Dob 0 ,

5. if d E Dobj0 and 1 EC then Inj(l = d) E Dobj*,

6. if di .... ,d. E Dobj ° then Jdl,...,dJ E Dobj 0 , 0 < n.

Figure 4 shows examples of descriptions.
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Unity = (]
Point23 = {X-cord = 2, Y-cord = 3]

Onelist = Inj( Cons = [Head = 1, Tail = Inj(Nil = Unity)])

Null-person = (rec p. (Name = null,ting, Age = nulli,, Parents = {p}])

Null-employee = (rec e. (Name = nullt,.,,,, Age = nullnt, Parents = lNull-person),

Salary = nullint, Boss = e])

John = [Name = "John Smith", Age = 34, Parent = (Null-person),

Salary = 23000, Boss = Null-employee]

Maryl = (Name = "Mary Blake", Age = 21, Parent = lNull-person),

Courses = (" mathl2O", "phil340" , "logiclO"]]

Mary2 = [Name = "Mary Blake", Age = 21, Parent = (Null-person),

Salary = 9000, Boss = John]

MaryS = (Name = "Mary Blake", Age = 21, Parent = (Null-person),

Courses = 1"math10", " phil94 0", "logicio")],
Salary = 9000, Boss = John]

Flights ( (Flight = (F-id = 001, Date = "8 Aug"], Plane = "Concord"],

(Flight = [F-id = 83, Date = "9 Aug"], Plane = "707"],
[Flight = [F-id = 116, Date = "10 Aug"], Plane = "747"])

Flown-by = ([Plane = "Concord", Pilots = 4 [Name="Jones", Emp-id = 5566]1],
(Plane = "707", Pilots = [Name = "Clar", Emp-id = 1122],

[Name = "Copely", Emp-id = 2233],
[Name = "Chin", Emp-id = 3344]R],

(Plane = "747", Pilots = [Name = "Clark", Emp-id = 1122],

[Name = ,, Jones", Emp-id = 55661])

Schedule-data = 4 [ Plane = "Concord", Pilots = ([Name = "Jones", Emp-id = 5566].,

Flight = [F-id = 001, Date = "8 Aug"]],

Plane = "707", Pilots = ([Name = "Clark", Emp-id = 1122].

[Name = "Copelyt ", Emp-id = 2233],

[Name = "Chin", Emp-id = 3344]),
Flight = [F-id = 83, Date = "9 .4 ug"]],

Plane = "747", Pilots = I[Name = "Clark", Emp-id = 1122],
[Name = "Jones", Emp-id= .5566]),

Flight = [F-id = 116, Date = "10 Aug"]]f)

Figure 4: Examples of Descriptions
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4.4 Typing Relation

Description types represent structures of descriptions. A description d has a description type a, if d has the

structure represented by a. This relationship is formalized by the typing relation:

Definition 18 (Typing Relation) Let f be the equivalence relation on £ defined as 11 -- 12 iffll = 12 or

11 = emi, 12 = elmi for some ij. Define the consistency relation :b between Fd and F, as follows: f g

iff one of the following holds:

1. f=g,

2. f = Inj and g = Variant,

3. f E Bg and g E B,

4. f = null, and g E B.

The typing relation d : o, between Dobj ° and Dtype' is defined as: d : a iff for all a E dom(d),

1. there is some a' such that a :i a', d(a) :b a(a'),

2. if d(a) = Record then {l E £a . I E dor(d)1 = {1 E la' . I E dom(a')},

3. if d(a) = Inj then if a . I E dor(d) for some I E C then I E {1E £1Ca' ! E dom(a)j},

The equivalence relation % "ignores" the difference due to the positions elm1,_., elm, of occurrences of

subtrees in the set constructor Set(elm = dl,... , elmn = d,).

When restricted to the set of finite descriptions Dobj, the above typing relation coincides with the

following relation :0 on Dobj x Dtype' defined by induction on Dobj:

1. c :0 b for all c E Bb,

2. nullb :ob,

3. ifd1 : u1 ,...,d, :0 a,, and l .... l,, IE A then [11 = dl,...., In d] :0 [l : ..... In:

4. Inj al, -! : -. . , In : an),

5. if d :a then Inj(l=d) :0 ( :....:,..),

6. if d :o .... ,, :0 a'then {d1 ,...d,, :0 #o.

Note however that d E Dobj and d :o a" does not implies that a E Dtype because of variant types, i.e. the

rule 4 in the above definition.

Figure 5 shows examples of typing relations that hold between descriptions defined in figure 4 and

description types defined in figure 2.
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Unity unit

Point23 : point

On'list : intlist

Null-person person

Null-employee employee

John : employee

Maryl student

Maryf : employee

Mary3 working-student

Flights flights

Flown-by : flown-by

Schedule-data : schedule-data

Figure 5: Examples of Typing Relation

From the above inductive characterization of typing relation, it is easy to check that for any finite

description d and any description type a it is decidable whether d : a or not. This property is essential to

develop a type inference system. Fortunately, this property still holds for general descriptions:

Proposition 7 For any d E Dobj °° , 01 E Dtype', the property d : o is decidable.

Proof Let Md = (Qd, sd, Fd, 6d, Ad) and M, = (Q, s, F, 6, A,) be Moore machines representing d and

a respectively. Let M = (Q,s,F,6, A) be the product machine (Md x M,,)/ where 2 is the equivalence

relation on C defined in definition 18. We show that d : o, iff .1 satisfies the following conditions: for any

reachable state q,

1. if q = (qj,z),q E Qi then z E Q2 and A(q) = (f,g) such that f :b g,

2. ifq = (ql,q2),ql E Q 1 ,q2 E Q2, A(q) = (Record, Record) and 6(q,l) = q' then I = (1',1'),!' 1 $,

3. if q = (qj,q 2 ),q, E Q1 ,q 2 E Q2, A(q) = (Ini, Variant) and 6(q,l) is defined then 1 = (I',1') or! = ($1')

for some 1' $ $.

By lemma 3, M satisfies the condition 1 iff for any a E dom(MI(sI)), there is some a' such that a a'.
6b(s 1 , a) = q,, 6b(s2,a') = q2, and A(qj) :' A2(q 2). Since Afd,Af, represent d, o respectively, this condition

is equivalent to the condition I of the definition of the typing relation. The equivalences of the conditions 2, 3

of the propositions and the conditions 2, 3 of the definition of the typing relation are immediate consequences

of their definitions.

Since M is effectively constructed and the above property is clearly decidable, the proposition is proved.

I
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4.5 Description Domains

By the typing relation, we can identify for each description type the corresponding set of descriptions. By

defining a proper ordering, we turn this set into a description domain. For a pair of trees dj, d2, Courcelle

described [19] the notion of a coherent and simplifiable relation on Subtrees(di) x Subtrees(d2 ) as a

relation - satisfying the condition that if

f~ l= dl,...,l 1. ln g(li = d ',..., 1. = d'n

then c i _ di, 0 < i < n and f = g. By generalizing this and combining it with Smyth powerdomain preorder,

we can generalize the information ordering on flat descriptions to Dobj':

Definition 19 (Information Preorder on Dobj') The information ordering on the set Fd of descrip-

tion constructors is the following partial ordering C-b:

frC- g iff f = g or f = nllb and g E Bb

The information preorder -4 on Dobj' is the relation defined as: d, :_ d2 iff there is a relation =, called

substructure relation, on Subtrees(dj) x Subtrees(d2) satisfying the following properties:

1. di = d2,

2. if d = d' then d(c) C-b d'(),

3. if d = d' and d(c) = Record then {i E £jl E dor(d)} = {l E £L£l E dom(d')} and for all I E {1 E L 1t E
dom(d)} dil = d'1I,

4. if d = d', d(c) = Variant and I E dom(d) then I E dom(d') and d/l = d'11,

5. if d = d', d(c) = Set then for all I E {l E C1 E dom(d')} there is some ' E {l E £11 E dom(d)} such

that d/l' = d'/l.

This ordering is also closely related to Smyth simulation on a certain class of directed graphs defined in [49].

The relation -<, when restricted to the set of finite descriptions Dobj, coincides with the following

inductively defined relation -o:

c __o c for all c E B b,

nuilb l c for all c E Bb,

nullb ..<o nullb,

[ll =d [..... t= ] 5. [= . =d:] ifd, -<d', I < i< n,

Inj -
°  lnj(l = d) for all d,

Inj(l = d) °  fnj(l = d') if d - ° d',

(dl,.... d.) I o jd'j,...,d' I ifVdaE{d' ..... d'm}. 3d E {d ,.... d ° d'

On a substructure relation =, the following property hold:
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Lemma 4 Let d, -( d2 and _ be a substructure relation on Subtrees(di) x Subtrees(d2 ). For d, E

Subtreea(di), 2 E Subtreea(d 2), if d' " d2 then d'1  d2.

Proof Immediate consequence of the fact that the restriction of a substructure relation = to Subtrees(d') x

Subtrees(d2') is also a substructure relation. I

We next show that - is a preorder having the desired properties. Rounds' recent work [49] also shows a

similar results in a slightly different framework.

Proposition 8 The relation - is a preorder on Dobj' with the pairwise bounded join property.

The strategy of the following rather long proof is the combination of the technique suggested in [3] to

construct a least upper bound of two regular trees by tracing the moves of two Moore machines representing

them in parallel and the property of Smyth powerdomain preorder shown in [56] that if s, and 82 are finite

subset of a a poset then {d' U d2 ldt E sl,d 2 E 82 and d, U d2 exists) is a least upper bound of s, and S2

under the Smyth preorder.

Proof For any description d, the identity relation on Subtrees(d) is a substructure relation and d -< d.

Suppose d1  d2 and d2 _( d3 . Let "1 and =2 be substructure relations on Subtrees(di) x Subtrees(d2 )

and Subtrees(d2) x Subtrees(d3) respectively. Then the composition of the two relations rl, r 2 also

satisfies the conditions of substructure relation. Therefore d, _< d3 and -_ is a preorder.

We next show that - has the pairwise bounded join property by showing the following stronger property:

There is an algorithm taking any two descriptions dl, d2 that determines whether dl, d2 have an upper
bound or not and that if dl,d 2 have an upper bound then computes (one of) their least upper bound. Let

Md, = (Q1, si, Fd, 61 , ) and Md, = (Q 2 , s 2 , Fd, 62 ,A 2) be Moore machine reprcsenting dl, d2 respectively.

Let M be the product machine (MI x M2 )/:. We say that a state q in M is consistent iff it satisfies the

condition that if q = (ql,q2) for some qi E Q1 ,q2 E Q2 then A(q) = (f,g) for some f,g E Fd such that f,g

has an upper bound and the following conditions are satisfied:

1. if A(q) = (Record, Record) then for all 1 if 6(q, 1) is defined and equal q' then I = (1', 1') for some 1' and

q' is consistent,

2. if A(q) = (Inj, Inj3) then there is at most one I such t hat 6(q, 1) = q' and if S(q, (1', 1')) = q' for some '

then q' is consistent.

We first show that if di, d2 has an upper bound then s is consistent. Suppose s is not consistent. Then there

is some a E V such that (1) b'(s,a) = (ql,q2),q! E Q1 ,q2 E Q2 and (2) for any prefix b ofa A(sb) is either

(Record, Record) or (Inj, Inj) and (3) one of the following hold: (a) A((q , q2)) = (f, g) such that {f, g} has no

upper bound, (b) A((q l , q)) = (Record, Record) and there is some (11, 12), 11 A l such that 6((q , q), (11, .12))

is defined, (c) A((q 1, q2)) = (Inj, Inj) and there are at least two distinct 11, 12 such that both 6((ql, q2 ), 11 ) and

b((ql,0),12) are defined. Now suppose to the contrary that there is some d such that dt :_ d and d2 _ d.

Let a be a string satisfying the condition (1) and (2). Then by lemma 4, di/a -< d/a and d2/a -< a/a, which

contradi-ts the condition (3).
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Next we show that if s is consistent then d, d2 has a least upper bound by constructing one. Suppose a
is consistent. Define M' = (Q, s, Fj, 6', A') from M as follows:

1. Q,s are same as M,

2. 6'(q, I) is defined and equal to q' iff one of the following hold:

(a) A(q) = (Record, Record) and 6(q, (, 1)) = q',

(b) A(q) = (Set, Set), I = elm, and 6(q, (elmi, elmk)) = q' where (elmj, elm,,) is the ith smallest symbol
under the total order <: on £ in the set {(elnm, e/m,,)[6(q, (elmi, elm,)) is defined and consistent},

(c) A(q) = (Inj, Inj) and one of the following hold: (i) 6(q, (l, l)) = q', (ii) 6(q,(l,$)) = q' or (iii)

6(q, (,l)) = q',

(d) q = (q, $) and l = (1, $)or q =($,q 2) and l= ($,l).

3. A' is d'efined as Je U y if A(q) = (z,y), z,yE Fd and zUy exists

A'(q) - if A(q) = (z,$)

Y if A(q)= , y)

$ otherwise

We show that M'(s) is a least upper bound of dj, d2 . Let S, = {Mi(q)Iq E Q 1,q reachable}, S2 = {M2(q)[q E

Q?, q reachable), and S = {M'(q)lq E Q, q reachable). Then S = Subtrees(dj), S 2 = Subtrees(d2) and
S = Subtreea(M'(s)). Define the relation -1 between S, and S as Mi(q) -- M'(q') iff q' = (q,z) for
some z. Then it is easily checked that this relation satisfies the conditions of substructure relation and
therefore di "< M'(s). Similarly d2 -< M'(s). Let d be any upper bound of dj, d2 . Let _ ', =2 be substructure

relations on Subtrees(di) x Subtrees(d) and Subtrees(d) x Subtrees(d) respectively. Define the
relation = on S x Subtrees(d) as M'(q) = d' iff one of the following hold: (1) q = (q1 ,S),Mh(ql) -' d,
(2) q = ($,q 2 ),M 2 (q2 ) =' d', or (3) q = (qj,q 2 ),M,(qj) ='i d',M 2 (q2 ) =2 d'. Then = clearly satisfies the
conditions 1,2,3,4 of the definition of substructure relation. For the condition 5 of substructure relation,
suppose M'(q) = d' and M'(q) = Set. If q = (qi,$) or q = ($,q2) then the condition 5 follows from the
fact that ,= are substructure relations. Suppose q = (qj,q 2 ). Then M,(qj) =', d' and M2 (q 2 ) z ' d'.
If I E dom(d') for some I E L, then there is some 11,12 E £ such that 6 i(qj,l) = q'1 ,62(q2,12) = q2,
MI(q') _ d'/ and M2 (q') =' d'/. By lemma 4, M1 (q') -< d'/ and M.2(q') - d'/l. Let M,Mv,Mf"

be respectively Moore machines obtained from M1 , MW2 , M' by respectively replacing their start states with
qj,q',(q',q'). Clearly M,(q') = M(q'), M(q) = M'(q') and M" = (M x M)/ . Since MA'(q,) and

M2 (q) has an upper bound, (q',q') is consistent. By definition, It = elm and 12 = elmj for some i,j. Then
by definition of A' there is some 1' such that 61(q, 1) = (q', q') and therefore M'(q)/l' = d'/l.

Since M' is effectively constructed, the proposition was proved. U

The above proof also cstablishes that least upper bounds of -< are effectively computable. For the Moore
machine M' defined in the above proof, the following property can be also easily shown: d -< d2 iff A'
satisfies the condition that for all reachable state q ii, M' if q is consistent then it is of the form q = (z, q2)

and if q = (qj,q),qi E Q,,q 2 E Q2 then A,(q,) C A2(q2 ). Therefore we have:
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Proposition 9 The relation - on Dobj' is decidable and least upper bounds (if they exist) are effectively
computable.

The next proposition show that the typing is preserved by least upper bound.

Proposition 10 If d, : o, d2 : a, and d is a least upper bound of dl, d2 then d : 0'.

Proof Let dl, d2 be any descriptions and M' be the Moore machine representing a least upper bound of d,
and d2 constructed in the proof of proposition 8. By the construction of M', for any a E dom(M'(s)) either
there is some b E dom(di) such that a ,t b and d1(b) [_ M'(s)(a) or there is some c E dom(d2 ) such that
a % c and d(c) C_ M'(s)(a). Since for some x, y E d, if z t y and z :b f for some f E F, then y :b f, in
either case a satisfies the conditions of the definition of the typing relation d : 0'. 1

Definition 20 For any description type or E Dtype', the description domain D, associated with 0' is the
poset [({dld : o},_.)].

Theorem 6 For any o,, D, is a description domain.

Proof We show that D, has a bottom element. By definition of D,, it is suffices to show the existence of
a description d such that d -< d' for all d' E {did : o'}. Define a mapping nullval : F, - Fd as

nullb if f E B
nullval(f) = Inj if f = Varinat

f otherwise

For any o', define the description Null(o) as follows:

1. a E dom(Null(o')) iff a E dom(o') and there is no proper prefix b of a such that o'(b) = Varinat, and

2. for all a E dom(Null(a)), Null(a')(a) = nullval( a(a)).

From this definition, it is easy to check that Null(o') : a" and Null(o') -< d for any description d : o,. Then
the theorem follows from propositions 8, 9, 10 and lemma 1. 1

4.6 A Model of the Type System

We now define the set of embedding-projection pairs to connect the set of description domains and turn
them into a database domain.

For defining functions and properties on D0, the following definitions and results are useful. Let (P1 , 51),
(P 2 , <2) be a preordered sets. A function f P - P2 is monotone iff for any Pa,P2 E P1, if Pi <5 P2 then
f(P) <2 f(P2). For a monotone function f P " P'2, define [f] : Pui/ -. Pz/- as [f]([z]) = [f(z)]. Since f
is monotone, [f] is well defined. It is also clear that [f] is monotone. The following lemma is an immediate
consequence of the definition.
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Lenma 5 Let (P1 , <1), (P 2, 2) be a preordered sets and f : Pi - P2, g P2 -* P1 be monotone functions.

If for all p E P1, g(f(p)) = p and for all p E '2, f(g(P)) <2 p then ([f], [g]) is an embedding-projection pair

between [(P 1, <)] and [(P2,:52)].

Definition 21 Let 0 1 ,02 E Dtype' such that al - 0 2. is a function from D, 1 to D.2 defined as

follows: a E dom(O',,-. 0 (d)) iff either (1) a E dorn(d) or (2) a E dom(o 2 ) satisfying the following conditions:

1. if b is the longest prefix of a such that b E dom(d) then d(b) = Record, and

2. a has no proper prefix b such that b 0 dorn(d) and o 2(b) = Varinat,

and for any a E dom(O,.-.¢,(d)),

d(a) if a E dor(d)

nullva(Or2(a)) otherwise

where nullval is a function from F, to Fd defined in the proof of theorem 6.

0'2-1, is a mapping from D,, to D,, defined as follows: for any d E DO2,, 10_,201,(d) is the restriction

of d such that a E dom(iP,2 ...,q 1)(d) iff a E dom(d) and there is some b E dom(o-2) such that a Z: b.

Define

Emb' = { 10 , _eIo1, 2 E Dtyjpe, , a, < 92}

Emb = { ll 0 -i,] 2 E Dtype, 1 < '21

Proj' = { -1, ,2 E Dtype°° , r 2 < Oi}

Proj = 'k" 0 1 0-11 oP2 E Dtype,o 2 :5 61 }

For Emb and Prol, there are inductive definitions. We first define functors (function constructions) for

records, variants and sets.

1. Records.

Let fl :~ " o2,...,f, : o --* o, be any functions and c,+ 1,.. .,Cn+m be any constants. [I1 =

t,... , = , l+l = cn+,...,ln+m = cn+,] is the function on records of type [I : ., n : o',"
defined as

[1i fl . = fnI++ = C .,.. ln+m = Cn+m]([l =di,.  In = d,])

[11 = fi(di),.. ,n = f.(dn),ln+1 = C.+ .... + = IC+.m]

and [1 = fi, ... ,I = fk, 1k+1 = $,. , = $], k < n is the function on records of type [1 : a,. =

tlk+1 = ok+ ,,..,In = an] for some ok+I,..,o, defined as

[11 = fl = I = fk,lk+ = $ .... I = $]([l = d,..... In = dn]) = [1 = fi(d) ... ,l = fk(dk)]

2. Variants.

Let f, :a -: al ,... , f, : -a . be any functions. (11 = fl..., In = fn) is the function on variants
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of typ' (L:i,. : o,.o) defined as

= Inj

(l=i,...,,,= f,)(nj(t= d)) = Inj(4i=f,(d)),1<i<n

3. Sets.

Let f : oI - o-2 be any function. if) is the function on sets of type (ot I defined as

{.f]{dt,..,dn)) = i.f(di),._.., f (dn))

Then Emb coincides with the following inductively defined set Emb*:

1. idb E Emb for any b E B where idb is the identity function on Bb,

2. ifOO,1 0,21,... , Oa -r E Emb* and e'n+,..., On+m E Dtype then I1 =1 , =

Nuli1(o'.+),..., ln+m = NuIl(On+m)] E Emb* where Null(o,) is the value defined in theorem 6,

3. if , .... _3 E Emb° then (11 - _ ... = - -- ) E Emb° ,

4. if E Emb° then fu-2I E Emb*.

The Proj coincides with the following inductively defined set:

1. idb E Proj where idb is the identity function on Bb,

2. if ?4.,2 E e Pros then [l, = 0 ,. i = ?_o,1+ = $ ..... ,n+m = $] E Proj,

3. if ... , , E Proj then (l1 = ... = inl) E ProS,

4. if EbUz.U2 E Proj then Fk. 1- I E Proi.

Proposition 11 For any O'l,O"2 such that 71 _ 02, ( is an embedding-projection pair

between D,, and D,,.

Proof For any element d E D,,, let d' = 01 ,1_ 2 (d) and d" = u 2-1,(d'). By definition of 4 _u,

dor(d) g dom(d') and for any a E dom(d),d'(a) = d(a). By definition of 2~o_' a E dom(d") iff a E

dor(d') and there is some b such that a : b, b E dom(0.i). Also for any a E dorn(d"), d"(a) = d'(a). But by

definition of D,,, a E dorn(d) iff there is some b such that a ; b, b E dom(a1 ). Therefore d = d" and hence

= d.

For any element d E Do2 , letd = (d) and d" = ,(d'). Define a relation = on Subtrees(d") x

Subtrees(d) as follows: for di E Subtrees(d"),d2 E Subtrees(d), d, = d2 iff either there is some

a E dom(d') such that d, = d"/a and d2 " d/a, or there is some a, b such that a V dom(d), a - b, d, = d"16

and d2 = d/a. Since c E dom(d'), d" d. Suppose d, = d"/a,d2 = d/a for some a E dom(d'). By

definition of and ,d"(a) = d#(a) = d(a). Suppose d, = d"/b, d2 = d/a for some a dom(d'),

a - b. Then by definition of , b E dom(0 2) and d"(b) = nullva4O'2 (b)). By the property of nuilval,
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d"(b) C- d(a). Therefore in both case di(c) C6 d2 (c). The other conditions of substructure relation (condi-

tion 3-5) can be easily checked by distinguishing cases whether a E dom(d') or not and using the property

of the typing relation in the latter case.

For the monotonicity of _ let d1 ,d 2 E Do, and A = '01-12(di), d = 0,1_,,(d2). Suppose there

is a substructure relation = on Subtreea(di) x Subtreea(d2 ). Define a relation 21 on Subtrees(d',) x

Subtreea(d2) as follows: d =' d' iff either (1) there are a,b such that di/a = d2/b and d = d'1/a, d = d2/a or

(2) there are a,b,c such that di/a = d2/b, a.c 0 dor(di), b.c 0 dor(d 2), d = d1/a.c and d' = d2/b.c. It can

then checked that =' is a substructure relation. For the monotonicity of let dl, d2 E D, 2 and d' =

12.-. (d1), d2 = 1,-,(d2). Suppose there is a substructure relation = on Subtreea(dl) x Subtreea(d2 ).

Define a relation =' on Subtrees(dl) x Subtreea(d2) as: d ' d' iff there are a, b such that dl/a = d2/b

and d = d'/a, d' = d2/a or Then it is easily verify that =' is a substructure relation. Then the proposition

follows from lemma 5. 1

From the inductive characterization of Emb and Proj it is easy to see that all embeddings and projec-

tions between finite types are computable functions. This necessary property still hold for general embeddings

and projections.

Proposition 12 Elements of Emb' and Proj' are all computable functions.

Proof We first show for the embeddings in Emb'. Let al < o' 2 and d : a,. Let Md = (Qd, sd, Fd, 6 d, Ad)

and M,. = (Q,,, F,, A6, ) be Moore machines representing d, 0 2 respectively. Let M = (Q, s, F, 6, A) =

(Md x M/,,2 ) be the product machines modulo the equivalence relation defined in definition 18. Define

M'= (Q, s, Fd, 6', A') from M as follows:

1. Q, s are same as M,

2. 6'(q, 1) is defined and equal to q' iff either 6(q, (1, 1')) = q and 1 4$, or 6(q, ($, 1)) = q' and A(q) A
(z, Variant) for some z.

3. A'(q) = f iff either A(q) = (f,g) for some g or A(q) = ($,g) and f = nullval(g).

It can then be checked that M'(s) =

For projections in Proj', let 02 _ al and d : a. Let Ad = (Qd,sd,Fd, 6d,Ad) and MAf -

(Q1 2 ,F,, 6,,, A,) be Moore machines representing d,o'2 respectively. Let M = (Q, s, F, 6, A) = (.fd X

M)/i. Define M' = (Q, s, Fd, 6', A') from M as follows:

1. Q,s are same as M,

2. Y'(q, 1) is defined and equal to q' iff 6(q, (1, 1')) = q and 1' 6 $.

3. A'(q) = f iff A(q) = (f, g) for some g.

Then by lemma 3, M'(s) = C,_0 2 (d). I
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We now have the following theorem:

Theorem 7 ({D, ja E Dtype'}, {[0 E Emb}) is a database domain and a model of(Dtype',<).

Proof By proposition 11, for all 0 E Emb° , [] is an embedding. Since Dtype 0 is a poset with pairwise

bounded join property, the conditions 1 - 4 of database domain are satisfied by the set {[O]JO E Emb o}.
The condition 5 is shown by proposition 12. I

This theorem says that we have successfully completed the constructions of a type system for complex
database objects and its semantic domain. The type system allows arbitrarily complex objects constructed
by records, variants, finite sets and recursion. A join and a projection are available as computable functions
on arbitrarily complex structures as given by the equations (1) and (2). Moreover, since these operations
have polymorphic type schemes (3) and (4), the result types can be always computed from the types of their
arguments without actually computing them. The following are examples of joins of descriptions in figure 4:

join(Maryl, Mary2) = Mary3

join(Flights, Flown-by) = Schedule-data

The types of the above two joins are working-student and schedule-data respectively, which are computed

from the types of their arguments. This property enables us to develop a static type inference system. The
another important implication of the theorem 7 is that it provides an elegant semantic formulation of the
domain of complex database objects endowed with the join and the projection.

5 A Polymorphic Language for Databases

We now show that the entire type system and the semantic domain we have just constructed can be integrated
in an ML-like programming language. Such integration yields a strongly typed polymorphic programming

language suitable for databases. An experimental programming language, Machiavelli [451, embodying the
integration has been developed at University of Pennsylvania. In this section, we show how the integration
is done by defining a subset of Machiavelli. Redders are refer to [45] for discussions of the advantages of such
a polymorphic database language and many examples of database programming in the language.

5.1 Types and Expressions

The first step of the integration is to define the set of types and the set of expressions of the language in such
a way that the set of description types Dtype' and the set of descriptions Dobj' can be freely mixed

with the other constructs of the language. This is done by simply extending term languages for Dtype'

and Dobj$ we have defined to include function type constructors and function expressions.

The set of types Type (ranged over by t) of the language is given by the following abstract syntax:

t ::= b It - t I [I : t'..... I: t] I (I: t..... I: t)J it) [(ree V. t(v))
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where b stands for the set of base types B, t(v) stands for type expressions possibly containing symbol v.

Regarding t, -- t2 as a shorthand for Fun(Domain = ti, Range = t 2 ), each type expression t denotes the
regular tree M,(s) E R(F, U {Fun)) where M. is the Moore machine defined in section 4.1. We regard

t E Type as the corresponding regular tree Mt(s). The set of types that do not contain the function type
constructor - is exactly the set of description types Dtypeoo.

For expressions of the language, in addition to expressions that denote descriptions, we introduce the

following expression constructors:

(fn(z) => e) function abstraction

f(a) : function application

r.l : field selection form a record r

modify(r, i, e) modification of I field in r with e

(case v of 11 of z, => e 1, .. ,4 of z, => e,) case analysis for a variant

union(sl,s2) : set union

prod(sl,82) : cartesian product of two sets

map(f, s) : map a function f to a set s

The set of expressions Expr (ranged over by e) of the language is then given by the following abstract

syntax:

e ::= clzle(e) I(fn(x)=>e)Iletx=einel

[I = e,... l = e] I e.1 I modify(e, 1, e) I

Inj(l = e) I (case e of l of x => e,...,l of z => e)

fe,..., el I union(e, e) I prod(e,e) I map(e,e) I

join(e, e) I project(e, a) I (rec z. e)

where c stands for constants, z stands for variables, let z = e in e stands for ML let-expressions. The subset

of Expr defined by by the following abstract syntax

d::= c 1 [ = e,...,1 = e] I Inj(l = e) I fe,...,el I (rec x.d(z))

denote regular trees and corresponds exactly to the set Dobj ° . We identify an expression d and the

corresponding description in Dobj °' if d is in the subset specified by the above grammar.

5.2 Type Inference

Different from the explicitly typed language, the expressions we have defined carry no explicit type informa-
tion. Types of expressions are completely inferred by a proof system called a type inference system. In [44],

a complete type inference system for a language containing database objects without variants and recursive
objects is d-fined. By using the typing relation defined in section 4.4, the type inference system defined in

[44] can be extended to the entire set of the above expressions.
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In [44], it is also shown that by extending Milner's method [40] for ML type inference with conditiona on

substitutions, we can define a complete type inference algorithm. The method relays on the solvability of

unification of type expressions, the decidability of the ordering on description types, and the computability

of least upper bounds of description types. Huet showed [28] the solvability of unification problem of regular

trees and define a unification algorithm. In section 4.4, we have shown the decidability of the ordering

relation and the computability of least upper bounds of description types. Using these two results, the

method described in [44] can be extended to the entire language.

5.3 Equality and Reduction Relations on Expressions

On expressions, sets of rules should be defined to represents the equality and the reduction relation on

expressions, which determine the dynamic properties of the language. These relations are defined on typed

expressions derived in the type inference system. The equality rule (rule scheme) for expressions correspond-

ing to desciptions is given as:

(description) dl: t = d2 : t if di, d2 E Dobj ° ° , di <_ d2 , d2 "< di

Since -< represent the goodness of descriptions, this rule correctly captures the intended equality on descrip-

tions. The equality rules for the join and the projection are defined as:

(join) join(di : tl,d 2 : t 2) : t = qft-t(dl) UD, Ot2 -t(d2) if t1,t2 E Dype,tI Ut 2 =
t

(project) project(d : t1,t2) : t 2 = i'j,-t 2(d) if t1,t 2 E Dtype°,t 2 < tI

Combining them with the rules for standard equational reasoning, the standard rules for function applica-

tions (the rule 3), let-expressions and primitive operations other than join and project, we have a complete

equality relation for the language.

In order to define a reduction relation, we define the notion of normal form on descriptions. For d E

Dobj ° , d is in description normal form if for any element d' E Subtrees(d) if d'(e) = Set then there is

no dl,d 2 such that d, = d'/elmi, d2 = d'/elmj for some i,j and d, -< d2 . It can be shown that for any

d E Dobj', there is some d' such that d' is in description normal form and d = d' in the sense of the above

equality relation. Moreover, such d' can be effectively computed. The reduction rule for descriptions is then

given as:

(description) d,: t -- d2 : t if dl, d2 E Dobj' and d2 is in a description normal form

The reduction rules for the join and the projection are same as the rules for equality. Combining with

the rules for standard equational reasoning ezcept the rule for symmetry, the standard rules for function

applications (the rule 6), let-expressions and primitive operations other than join and project, we have a

complete reduction relation for the language. Based on this reduction relation, an operational semantics of

the language is defined. Actual evaluation algorithm for the language can be defined by using the algorithms

for computing least upper bounds of descriptions, embeddings and projections that have been defined in the

proofs of their computabilities in the previous section.
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5.4 Semantics of the Entire Programming Language

In practice, it is sufficient to have a type inference algorithm to type-check programs and an evaluation

algorithm to compute results of programs. For a better understanding of the language, however, it is highly

desirable to construct a complete semantics of the entire programming language. Such a semantics should

be useful for reasoning about various properties of programs and for further enhancement of the language.

In addition to the semantics of database type system we have constructed, a semantics of the entire

language requires a semantics of ML polymorphism. Milner proposed one such semantics [40] using a

universal value domain of an untyped language. In his semantics, a type denotes a subset of the universal

domain. MacQueen et. al. extended this semantics to recursive types (36]. However, this semantics does not

agree with behavior of implicitly typed expressions. (See a [43] for an analysis of this problem.) Recently,

Mitchell and Harper showed that [41] there is a one-to-one correspondence between a typing derivation in

ML type inference system and a term in a explicitly typed language. Along the line of this connection,

it is showni in [43] that a semantics of explicitly typed language yields a semantics of the corresponding

implicitly typed language supporting ML polymorphism. It is therefore sufficient to construct a semantics

of the explicitly typed version of the language.

We regard expression constructors other than function abstraction and function application as ("curried")

constant functions. For example, the record [Name = "Joe"] is regarded as the application [Name = (" Joe")

of the constant function [Name = -] to the constant "Joe" and a join join(dl, d2 ) is regarded as the curried

application join(dl)(d2) of the constant function join to dl, d2 . Recursive descriptions can be also treated

in this way. The explicitly typed language corresponding to our language is then obtained by explicitly

specifying the type of parameter in function abstraction as in (f n(x : t) => e) and replace each constant by
the corresponding set of typed constants. The resulting language is a typed lambda calculus with constants.

In [10], a framework for a semantics of typed lambda calculi was given. In the framework, the set of types

is generalized to a type algebra allowing arbitrary equations (or constraints). Since the set of regular trees

satisfies their definition of a type algebra, we can use this framework to construct a semantics of the explicitly

typed language. In the framework, a semantic space of a language is a frame (.F, ., Y) where: F is a Type-
indexed set such that each Ft E Y is non-empty, 9 is a binary operation 9 : Ft,t,2 - Ft, representing the

function application and -f is a function that interprets constants. For our language, we impose the following

conditions on a frame (7, e, f):

1. for each t E Dtype', (Dt U {T}) C Ft, where D, is the description domain we have constructed and
T is a distinguished value representing the exception of the computation of join,

2. for c E Bb, y(c : b) = c,

3. for nulib, 7(nuilb b) = nulib,

4. for a constant f t introduced for a term constructor, y(f : t) is the element in F, satisfying the

intended equations. Such equations are easily defined for each constant based on the structures of

database domain we have developed in the previous section. For example, the necessary equations for
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7(join : t t2 - t) E Ft, where t = t1 U t2 , are given as:

(j )(d 2 ) = k-0(d)D, t,,(d 2) if lub exists{ T otherwise

for all dt E A ,d2 E Dt,.

The method described in [10] can then be applied to construct a semantics of the explicitly typed version of

our language. A semantics of the implicitly typed language supporting ML polymorphism can be constructed

by using the method described in [43]. Based on the semantics, we can show the strong soundness and

completeness theorem for the equational theory of our language as is done in [43].

6 Conclusion and Future Works

Based on a4 abstract analysis of the relational data mode, we have proposed a framework for semantics of
types for databases. We characterized a semantic space of individual type as a poset of descriptions, which
we called a description domain, and a semantic space of the entire type system as a poset of description
domains, which we called a database domain. Based on this framework, we have constructed a concrete
database type system and its semantic domain using regular trees supporting arbitrary complex structure

constructed from records, variants, finite sets and recursive definitions. On these complex structures, a
join and a projection are available as typed polymorphic operations. We have also shown that both the
type system and the semantic domain can be uniformly integrated in an ML-like polymorphic programming

language.

In our study of database type system, we have implicitly assumed that database objects are values. Tow
objects are equal if they are equal as values. As we have demontrated, these value-based database systems
are fit nicely to a paradigm of functional programming languages. However, value-based systems have a
disadvantage that it is rather difficult to represent sharing and mutability, which are also important aspects
of database objects. In order to overcome this disadvantage, the notion of "object-identities" has been
proposed [7, 37, 33]. In an identity-based system, database objects are represented by their unique identities
associated with their attribute values. For the same reason as we wanted to integrate value-based database
system into a modern type system of a programming language, we would like to integrate identity-based
database objects in a types system of a programming language. Although the notion of object identities
is intuitively clear and appealing, integrating it into a programming language type system constitutes a
challenge. As demonstrated in [451, the major properties of object identities seems to be captured by ML
reference type when integrated in a database type system like the one we have developed in this paper.
However, a uniform and elegant integration will require an analysis of the properties of object identities
analogous to what we have done to the structure of value-based complex database objects.
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